
REAL-TIME FAULT TOLERANCE AND IT’S
IMPLEMENTATION USING RTAI 3.8

Ashis Kumar Mishra, Anil Kumar Mishra, Yogomaya Mohapatra
Department of Computer Science & Engineering, College of Engineering & Technology

Bhubaneswar, Pin-751003, Odisha, India

Abstract— the fault tolerance for real-time application
avoidable by help of the protocol is CRR. However, existing
checkpoint implementation support only non-real-time
applications as the checkpoint overhead is usually non
deterministic. In this paper, we represent an implementation
of checkpoint scheme with the RTAI 3.8 supported by Linux,
where services provided by the RTOS makes the checkpoint
overhead, including the time to place recover the system from
a failure is predictable. It also gives an optional view of the
hard real-time definition and an appropriate perspective on
why low cost general purpose computer can be an effective
operating system available. The RTAI 3.8 for Linux describe
here is a viable and effective open-free source software
approach for adding hard real time capabilities to a widely
available general purpose operating system. It keeps real time
applications separated from non real time ones, achieving
high efficiencies for both kinds of executions by affording
appropriate synchronization and communication tools to
allow an efficient interaction between two environments.

Keywords— CRR, RTOS, API, FAULT-TOLERANCE,
HARD REAL-TIME.

1. INTRODUCTION

The study of temporal aspects of computations has been
ongoing for several decades. However, in recent years the
attention being paid to this subject has increased
tremendously. A wide variety of system currently exists in
which timeliness is an important requirement, and these are
called real-time systems. More precisely, real-time systems
are systems where the correctness of operation depends not
only logical result of their computations, but also on the
time at which the results are produced [8]. Consider a
system in which data need o be processed at a regular and
timely rate. For example, an aircraft uses a sequence of
accelerometer pulses to determine its position. In addition,
a system other than aeronautic ones requires a rapid
response to events that occur at a no regular rates, such as
an over temperature failure in the nuclear plant [1]. In some
sense it is understood that these events require Real-Time
processing.

Now consider a situation in which passenger approaches
an airline reservation counter to pickup his ticket for a
certain flight from New Delhi to Mumbai, which leaving in
5 minutes. The reservation clerk enters the appropriate
information in to the computer and a few second later a
boarding pass is generated. Is this Real-Time System?
Indeed, all three systems- aircraft, nuclear plant, and airline
reservation are Real-Time because they must process
information within a specified interval or risk system
failure. Although these examples provide an intuitive
definition of real-Time system, it is necessary to clear
define when a system is Real-Time and when it is not. The
fundamental definition of Real-Time system engineering

can vary depending on the resources consulted. The
following definition have been collected and refined to
form that is intended to be most useful to the practicing
engineering, as opposed to the theorist. Real-Time systems
are different from general purpose computing systems in
several ways. The processes in a real-time system have
time related attribute such as ready times, deadlines,
computation times and periods [10]. Therefore, the worst
case behaviour of real-time systems is more important than
the average response time and user conveniences, which
are important issues in general purpose computing systems.

The hardware of the general purpose computer solves
problems by repeated execution of macro instruction
collectively known as software. Software is traditionally
divided in two types’ system program and application
program. A system program consists of software that
interfaces with the underlying computer hardware, such as
scheduler, device drivers, dispatcher, and program that acts
as tools for the development of the application programs
[9]. These tools include compilers, which translate high
order language into a special binary format called object or
machine code and linker, which prepare the object code for
execution. An operating system is a specialized collection
of system programs that manage the physical resources of
the computer s. As such, a Real-Time operating system is a
system program. An application programs written to solve
specific problems. Such as a pay-roll preparation, inventory,
and a navigation. Certain design considerations pay a role
in the design of certain system programs and application
software intended to run in Real-Time environment.

The notation of a system is a central to software
engineering, and indeed to all engineering and warrant
formalization. A system is a mapping of set of inputs in to a
set of output. When the internal details of the system are
not of interest, the mapping function can be considered as a
black box with one or more inputs entering and one or
more output exiting from the system. Every Real-world
entity, whether synthetic or occurring naturally, can be
modelled as a system. In computing system, the inputs
represent digital data from hardware devices and other
software system. The input are often associated with
sensors, cameras, and other devices that provide analog
inputs, which are converted to digital data, or provide direct
digital input. The digital output of the computer system can
converted to analog outputs to control external hardware
devices such as actuators and displays. The time between
the presentation of a set of inputs to a system (stimulus)
and the realization of the required behaviour (response)
including availability of all associated output, is called
response time of the system.

A Real-Time system is a system that must satisfy
explicit (bounded) response time constraints or risk severe

Ashis Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 295 - 301

www.ijcsit.com 295

consequence including failure. A real-Time system is one
whose logical correctness is based on both the correctness
of the outputs and their timeliness. In any case, note that by
making unnecessary the notation of timeliness, every
system. Real-Time systems are often reactive or embedded
systems. Reactive system are those in which scheduling is
driven by ongoing interaction with their environment. For
example, a fire control system reacts to buttons pressed by
a user. These systems respond to a series of external inputs,
which arrive in an unpredictable fashion. The Real-Time
system process these inputs, take appropriate decisions and
also generate output necessary to control the peripherals
connected to them. The design of a Real-Time system must
specify the timing requirements of the system and ensures
that the system performance is both correct and timely.
There are three types of time Constraints :(1) Hard: A late
response is incorrect and implies a system failure. (2) Soft:
Timeliness requirements are defined by using an average
response time. If a single computation is late, it is not
usually significant, although repeated late computation can
result in system failures.(3) Firm: Firm real-time systems
have hard deadlines, but where a certain low probability of
missing a deadline can be tolerated.

Scheduling and resources allocation in Real-Time
systems are difficult problems due to the timing constraints
of the task involved. The order in which the tasks are
scheduled or dispatched has a large effect on the chances of
the tasks meeting their timing constraints. Many of the
Real-Time scheduling problems are known to be NP
complete. A great deal of research has been conducted for
scheduling in a variety of Real-Time system models.

2. LITERATURE SURVEY

2.1 Fault-Tolerance
Due to the catastrophic consequences of violating timing

constraints in hard Real-Time systems, it is important to
consider the effects of the operating environment on the
system. Since the environment may cause various kinds of
faults to be generated, it is essential that fault tolerance be
incorporated in a real-time system when it is designed. A
system is fault-tolerant if it continues to perform its
specified tasks in the presence of hardware failures or
software errors [8]. A fault-Tolerant system has to ensure
that faults in the system (which are defects in hardware or
software) do not lead to a failure (which is the non-
performance of some action that is due or expected). Fault-
Tolerance is achieved through the use of redundancy,
which is the addition of information, resources, or time
beyond what is needed for normal system operation [8].
One of the main requirements of a fault-tolerant system is
reliability. A highly reliable system continues to perform
correctly over long interval of time. For many reasons, the
fields of real-time systems and fault tolerance have largely
evolved independently of each other. One of the reasons is
that more important aspects of Real-Time system such as
scheduling were not well understood till recently. Another
reason is that massive hardware redundancy was used as
the main technique for tolerating faults. This technique is
expensive and could be afforded only in large system such
as space shuttles and aircrafts.

The fault tolerance requirements make a Real-Time
system even more complicated because faults must be
detected and tolerated within the timing constraints of the
tasks. If faults trigger backup tasks for recovery purposes,
the backup tasks must also be executed before the task
deadlines. Due to these complexities, most Real-Time
systems to date only dealt with timing constraints.

Transient faults in Real-Time systems are generally
tolerated using time redundancy, which involves the retry
or re-execution of any task running during the occurrence
of transient faults [1]. Several studies have done for using
time redundancy in embedded Real-Time system for
tolerating faults. Pandya and Malek in have used time
redundancy for tolerating single fault. In the event of faults,
all unfinished tasks are re-executed. Authors have
presented static and dynamic allocation strategies to
provide fault-tolerance. Two algorithms have proposed to
reserve time for the recovery of periodic Real-Time tasks
on a uniprocessor. Authors have provided exact
schedulability tests for fault-tolerant task sets. In their
paper, time redundancy has been employed to provide a
predictable performance in the presence of failures.
However no study has been done about adding appropriate
and efficient time redundancy into the schedule, which is
the main contribution of this paper. In recent years, Rate-
Monotonic (RM) scheduling policy has been used to
schedule Real-Time tasks in a variety of critical
applications. However, RM does not provide mechanism
for managing time redundancy, so that Real-Time tasks
will complete within their dead-lines even in the presence
of faults. The goal of this paper is to add appropriate and
efficient time redundancy to the RM scheduling policy for
schedule periodic tasks.
2.2 Causes of Hardware Transient Faults

 Limitations in the accuracy of electromechanical
devices (such as the positioning servomechanism for
the reading heads of a disk drive).

 Electromagnetic radiation received by interconnections
(such as long buses acting like receiving antennas).

 Power fluctuations or glitches not properly filtered by
the power supply.

 Effects of ionizing radiation on semiconductor devices.
This last cause is currently the most important
challenge to device designers and requires some more
explanation. It has been only recently that the effects
of ionizing radiation have been recognized as a source
for “soft” faults in computer memories. “Soft” means
that the information held in a memory device has
changed, but no irreversible change in the device has
occurred. Information in computer memories is stored
as the presence or absence of charge in capacitors.
When an energetic particle creates electron- whole
pairs in the vicinity of a capacitor, some of the added
charge carriers are collected by the capacitor. If the
added charge is sufficiently large, the information
stored is changed. The amount of charge that
represents a bit and the “critical” charge that is needed
to change it has decreased with miniaturization and the
advent of VLSI technology. Transient failures in
semiconductor memories due to ionizing radiation
were not significant until the introduction of 16K bit

Ashis Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 295 - 301

www.ijcsit.com 296

and 64K bit memory chips. Two main causes have
been detected as far as sources of ionizing radiation
which affect the operation of digital computers.

 Trace amounts of natural radioactive elements in
metallic and ceramic packaging materials.

 The effects of cosmic rays. Although the effect of
radioactive materials in packaging materials can be
reduced by further purification and better system
design, it is not clear how the effects of cosmic rays
can be avoided.

Fault-Tolerance is the tendency to function in the presence
of hardware or software failure. In Real-Time system,
Fault-Tolerance includes design choices that transform
hard Real-Time into soft ones. There are often
encountered in interrupt driven system, which are can
provide for detecting and reacting to a missed deadlines.
Fault-Tolerance designed to increase reliability in
embedded system can be classified as either Spatial or
Temporal.

2.3 Spatial Fault-Tolerance
The reliability of most hardware can be increased using
redundant hardware. In one common scheme, two or more
pair of redundant hardware devices provided inputs to the
systems [9]. Each device compares its output to its
companion. If the results are unequal, the pairs declare
itself in error and the output ignored. An alternative is use
a third device to determine which of the other two is
correct. In either case, the penalty is increased cost, space,
and power requirement. Voting scheme can also be used
in software to increase the algorithm robustness [1]. Often
like inputs are processed from more than one source and
reduced to some sort of the best estimate of the actual
value. For example, an aircraft position can be
determined via information from satellite positioning
systems, inertial navigation data, and ground information.
A composite of these reading is made using simple
averaging on a kalman filter.

2.4 Temporal Fault-Tolerance
Involves techniques that allow for tolerating missed

deadlines. Of two temporal Fault-Tolerant is more difficult
to achieve because it requires careful algorithm design [1].
2.4.1 Checkpoints

One way to increase Fault-Tolerant is to use checkpoints.
In this scheme, intermediate results are written to memory
at fixed location code for diagnostic purposes. These
location are called check points, can be used during system
operation and during verification. If the checkpoints are
used only during testing, then the code is known as test
Probe [5]. Test probes can introduce subtle timing errors.
2.5 Recovery-Block Approach
Fault-Tolerance can be further increased by using
checkpoint in conjunction with predetermined reset points
in software [7]. These reset points mark recovery block, the
check point are tested for “reasonableness”. If the results
are not reasonable, then processing resumes with prior
recovery block. The points, of course, are that some
hardware devices (or another process that is independent of
the one in question) have provided faulty inputs to the
blocks. By repeating the processing in the block, with
presumably valid data, the error will not be repeated. In the

process block model, each recovery block represents a
redundant parallel process to the block being tested.
Although this strategy increases system reliability, it can
have severe impact on performance because of the
overhead added by the checkpoint and repetition of the
processing in a block.
2.6 Software Black Boxes

The software black box is related to checkpoints and
used in certain mission-critical systems to recover to
prevent future disasters. The objective of a software black
box is to recreate the sequence of the events that led to the
software failure for the purpose of identifying the faulty
code. The software black box recorder is essential a
checkpoint that records and stores behavioural data during
program execution, while attempting minimize any fact on
that execution. The execution of a program functionalities
results in a sequence of module transition such that the
system can be described as a module their interaction.
When the software is running, it passes control from one
module to the next is considered a transition [6]. Call
graphs can be developed from these transitions graphically
using N×N matrix, where N represents the number of
modules in a system. When each module is called, each
transition is recorded in a matrix, incrementing that element
in a transition frequency matrix. From this, a posterior of
transition matrix can be derived that records the likeness
that transition will occur. The transition frequency and
transition matrices indicate the number of observed
transitions and the probability that some sequence is
missing in these data [7]. Recovery begins after the system
has failed and the software black box has been recovered.
The software back-box decoder generates possible
functional scenarios based on the execution frequencies
found in the transition matrix. The generation process
attempts to map the modules in the execution sequence to
functionalities, which allows for the isolation of the likely
cause of failure.
2.7 User-level Implementation of checkpoint for

Multithreaded Application on Windows NT
The existing user-level checkpoint scheme supports only a
certain portion of multi-threaded programs on windows
operating systems, which are based on single thread
programs. Here we focuses on studying a checkpoint scheme
to support inter- thread synchronization and quantitative
variation of threads for multithreaded process. Unlike other
proposed schemes in which thread is suspend by another at
checkpoint, this checkpoint scheme employs a strategy by
which a thread suspends itself. Therefore, it is free of
nondeterminacy of thread, suspension point, thereby
ensuring correct rollback recovery. The checkpoint scheme
supports also various synchronization objectives such as
Mutex, Critical section and Event, as well as Semaphore,
WaitableTimer and Thread.
The multithreading paradigm becomes a prevalent
programming model for application software, attributing to
its capacity that enables a process to execute multiple tasks
simultaneously and to exploit effective processor execution
resources. Fault-Tolerance in such a multithreading
environment also becomes essential requirement. As an
effective approach to fault-tolerance, checkpoint recovery
should play an important role in reliability of multithreaded

Ashis Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 295 - 301

www.ijcsit.com 297

applications. For single threaded programs on Windows,
many results have already been reported.
In the checkpoint recovery mechanism, a process state is
saved on a stable storage at a proper moment during normal
execution. The saved process state is called a checkpoint.
When a failure occurs, the program restarts and proceeds
from a saved checkpoint.
With respect to a user –level implementation of checkpoint
for multithreaded process on windows, inter-thread
synchronization and quantitative variation of threads are
distinctive features of multithreaded process distinguishing
from single-threaded process. In the existing checkpoint
schemes, all threads are suspended regardless of whether or
not they are in the middle of system API call. This
technique can be problematic for successful rollback
recovery. We address these issues and propose a new user-
level checkpoint scheme with reliable rollback recovery
capability.
2.7.1 The impact of thread suspension point on rollback
recovery
Process state includes two parts: user space state and
process environment. At user level, process environment
cannot be dumped directly, because it is located in OS
kernel. So it is necessary to assume that application
program interacts with system only through Win32 API. As
program start up, the checkpoint library is injected into the
address space of the process [7] to wrap system API [8] and
to create a checkpoint thread responsible for check pointing
and recovering. During the normal execution, the program
threads calls to system API are intercepted. According to
intercepted information, the checkpoint thread can
determine process environment at the moment of check
pointing. Just before dumping process state at check
pointing, check pointing scheme should manage to make all
program threads pause to guarantee consistency of the
dumped process state. The suspension points of program
thread impose an important impact on later roll-back
recovery. When the suspension point of a program thread
locates in API code segment 1 (ACS1) or kernel code
segment (KCS), it is possible to cause failure of later
recovery.
If the suspension action is forced at a moment when a
program thread is executing API code segment (ACS1), a
suspension point will located in API. During recovery
execution, it is possible for thread to access to kernel object
through a stale handle in its stack, which will result in a
failure of recovery execution.
When suspension action is imposed on a program thread
that executing kernel code, the thread does not pause. So it
will not meet the condition that all threads must pause.
Even if a program thread could pause kernel code, the
suspension point would be in middle of KCS. Thread will
begin to execute from the point AP2 at the later recovery.
So kernel code segment from KP to AP2 will not be
executed, which can induce a failure in recovery.
2.8 Motivation
Several real-time applications have already been mentioned
where fault tolerance is an essential requirement. To further
demonstrate the need for fault tolerance, consider the
application of real-time system intensive care unit of
hospitals. Such systems performs various monitoring task

which give early warning of life-threatening situations,
such abnormal blood pressure, heart rate, etc. it is essential
that such real-time system continue to operate even in the
presence of faults. Fault-tolerant medical systems include
heart-lung machines used during open-chest surgery and
artificial hearts. A system used for medical application
which include a wide range of real-time performance
requirements, for example, acquisition, processing and
immediate display of images in an operating room.
 Yet another use of fault-tolerant real-time scheduling is in
the field of robotics. Wilfong states that the requirement of
reliability of an automated system “is important for safety
in an environment where robots and other automated
equipment could be hazardous to humans working nearby”
the author also adds that reliability is important for
economic reasons, since faults can cause an expensive loss.
Since many takes automated system have timing
constraints, fault-tolerant real-time scheduling is an
important requirement in such systems. Even through
various kinds of faults can be tolerated by adding
redundancy to the system, simply adding redundancy is not
sufficient. The additional resources have to be managed
such that all timing constraints are met, and faults are
guaranteed to be tolerated. To manage the available
resources (commonly) in order to achieve timing and fault-
tolerance guarantees specialized scheduling algorithms are
required.
Many real-time systems focus on the use of hardware
redundancy to provide fault-tolerance. The main
advantages of using hardware redundancy are that
permanent hardware faults can be tolerated. However,
hardware redundancy also has some draw-backs. First of all,
hardware redundancy mainly targets permanent faults;
using massive hardware redundancy to tolerate such faults
is excessive. Many real-time systems with a need for fault
tolerance cannot incorporate extensive hardware
redundancy. An example of such system is mobile robots
on factory floors. According to Singh and Murugesan, in
their introductory article for a special issue on fault-tolerant
system, “no system design can provide fault tolerance for
conceivable failure scenario. The trick is to achieve the
desired level of dependability by building in protection
against the most likely failures, within the given design
constraints”.
Hardware redundancy has several other disadvantages
including heavier weight, larger volume, and greater power
consumption and as a result, increased cost. An other
disadvantages of using only hardware redundancy is that
correlated faults, which occur simultaneously in all
hardware modules, cannot be tolerated. For example,
electromagnetic radiation may simultaneously affect all
hardware modules in a space shuttle.
2.9 Related Work
Check pointing Rollback and Recovery (CRR) is one of the
popular temporal redundancy techniques used to achieve
fault tolerance in real-time system [1]. However, as
performing a check pointing also takes time and consumes
resources, we must take into account the check pointing
overhead to better predict the satisfaction of constraints in
real-time application.

Ashis Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 295 - 301

www.ijcsit.com 298

There are two main functions in a CRR protocol that need
to be implemented, i.e., the check pointing function where
checkpoints are taken periodically and the recovery
function where systems are recovered from faults by rolling
back to pervious check points. Pervious work in check
pointing implementation, such as [2-4], normally
accomplish these to function by utilizing multi-threaded
processes on general purpose operating system, where main
function thread has blocked by check pointing and recovery
threads frequently.

3. PROBLEM DEFINITION
How ever, implementation built on non-real-time OS do
not provide deterministic pre-emption and inter-process
communication, because a kernel space thread cannot be
interrupted by other kernel space thread or by user space
threads. The OS kernel is “locked” once a kernel function
is executing. This usage of locks introduces non-
deterministic latencies for both check point and recovery
tasks, which are not tolerable in real-time applications.
3.1 Objective
Here, we implement the checkpoint scheme with Real-
Time application Interface (RTAI 3.8) which is a popular
open source real-time patch for non real-time Linux. We
treat main function, check pointing function, and recovery
function as real-time tasks with different priorities so that
the time to save a checkpoint and recovery from a fault
becomes deterministic. It is implemented by using the
RTAI 3.8 real-time interruptions and scheduling
mechanisms. The check pointing library built on RTAI 3.8
can hence be adopted by real-time application to provide
fault tolerance.
3.2 Work Plan for Library Implementation with RTAI
3.2.1 RTAI
The Real-Time Application Interface (RTAI) modifies the
general purpose Linux Kernel so that the patch operating
system can use the interrupt Abstraction approach to add
deterministic real-time characteristic. Specifically, with an
additional interrupt abstraction layer on top of general
purpose Linux, RTAI can intercepts hardware interrupts
before they go to the Linux kernel. RTAI then apply real-
time scheduling policies to decide which task shall be run
first. Comparing with general purpose Linux. RTAI’s task
scheduler uses fully preemptive scheduling based on fixed-
priority scheme and hence provides predictable behaviour
for hard real-time tasks.
For nice feature of RTAI is that it provides a technique
named LXRT which allow users to develop and run hard
real-time tasks in user space using the same API that is
provided in kernel space RTAI. This practice makes the
development, debug and test of real-time applications much
easier than in the kernel mode. This is the method that we
use to implement the check pointing scheme on RTAI.
For each real-time application running on the RTAI Linux,
which is called “main function”, there are two associated
tasks, i.e., the checkpoint task and the recovery task. These
two tasks are performed through cooperation of four main
modules: a check pointing module, a fault detection module,
a fault recovery module, and a main function module. All
the modules are implemented as real-time tasks supported
by RTAI pre-emption and real-time scheduling services.

Since the scheduling is based on priorities, the assignment
of priorities set as below given show that higher number
representing higher priorites. Main function has priority1,
checkpoint has priority2, Fault Recovery has priority2 and
Fault Detection has priority3.

4. IMPLEMENTATION
Our checkpoint library is developed in user space with
LXRT. Under LXRT, these tasks can be conveniently
coded and tested in user space, and at the same time benefit
from the real-time characteristic. The implementation based
on the deterministic preemption ability offered by the RTAI.
With the RTAI scheduler, real-time tasks with higher
priority will be able to pre-empt lower-priority tasks, and
hence have deterministic timing behaviours.
The first development step is to use the API’s provided by
LXRT to create each function module as a real-time task
associated with a priority specified. Specifically, we use
two RTAI functions: rt_task_init_schmod and
rt_make_hard_real_time to create a real-time task. There
are two things happening after these two functions are
called. At first, a task is created and is assigned a priority.
In LXRT, however, SCHED_OTHER is the standard
Linux default scheduler performs non-preemptable and
non-priority scheduling on tasks. So the second function is
to switch the scheduling to SCHED_FIFO, which is
intended for special and time-critical applications that need
precise control over the way in which runnable processes
are selected for execution. Processes scheduled with
SCHED_FIFO are assigned static priorities in the range
from 1 to 99, which mean that when a SCHED_FIFO
process becomes runnable, it will immediately preempt a
running SCHED_OTHER processor a SCHED_FIFO
process of lower priority [5]. A FIFO policy is applied to
processes of the same priority. Pre-empted SCHED_FIFO
processes remain at the head of their priority queue and
resume execution again once all higher-priority processes
become blocked, which obviously can help us to
predetermine our running order and realize real-time
performance.
We have four tasks running concurrently in a system. The
main function is then created as a real-time task with
priority1, which means it is the lowest priority and can be
pre-empted by other higher priority tasks. In order to
perform the check pointing functionality, we create a check
pointing task with priority 2. Meanwhile, since a
checkpoint will be taken periodically, we need to set a real-
time timer and make the check pointing task as periodically
real-time task by calling the function start_rt_timer to start
a real-time timer, and then rt_task_make_periodic to make
the timer a periodical one. Then when the time reaches the
period, the timer wakes up the check pointing task. There
are two possible situations when the check pointing task is
up: (1) when the current running task is main function.
Since the check pointing task has higher priority, it
preempts the running main function and start taking
checkpoint. After the checkpoint is taken, another function
rt_task_wait_period will be called such that the check
pointing will be sent back to sleep and wait for next coming
period. The real-time scheduler will then resume the
execution of the main function; (2) if the current task is the

Ashis Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 295 - 301

www.ijcsit.com 299

fault detection or fault recovery. Since the check pointing
task has lower priority, the scheduler will simply block the
task until the higher priority tasks finish.
To achieve fault recovery, we need to create two real-time
tasks, i.e. the recovery task with priority 2 and fault
detection task with priority3. The fault detection task is also
periodc. When the timer reaches the fault detection interval,
the fault detection tasks preempts all running tasks and
sends a “keep alive” signal to the main function. If no
response is received, it will report a fault occurrence by
sending an RPC signal to the fault recovery task then block
itself.
Different from the check pointing and fault detection tasks,
the fault recovery task is event-driven instead of time
driven. Specifically, it starts as infinity loop and waits for a
fault event. When the recovery task receives “fault
occurrence” signal from the fault detection task, it calls the
function rt_task_resume so that the real-time scheduler put
it in the front of the running for execution. The task will
read the pervious checkpoint from the persistent storage,
and recover the application state accordingly. After the
recovery procedure finishes, the recovery task then calls
rt_task_suspend function to suspend itself again infinite
loop, until the next fault occurrence event arrives.
It is worth that the check pointing frequency has impacts on
system performance. In a particular, more frequent check
pointing speed up the recovery when the failures occur, and
therefore improves the system availability and accelerates
the execution time. However, check pointing also takes
time and consumes resources. It increases the fault-free
execution time and can jeopardize the satisfaction of timing
constraints. The check pointing task hence may need to
communicate with non-real-time Linux processes to receive
adaptive checkpoint
Interval in formation. For instance, a central controller
located in a remote process may decide the proper
checkpoint interval and send the value to the check
pointing task through communication network. The
challenge for adaptive checkpoint interval in real-time
application is that we need to guarantee that new
checkpoint interval can be applied to the application and be
effective within predictable time.
RTAI provides a set of real-time Inter Process
Communication (IPC) mechanisms that can be used to
transfer and share data between tasks in both the real-time
and Linux user space domains. These mechanisms include
real-time FIFO’s, mailboxes, semaphores, and RPC’s
(Remote Procedure Call). In this implementation, we use
the mailboxes for check pointing task to receive message
from normal Linux tasks.
Specifically, when the check pointing task is resumed by
the periodical timer and before it takes a checkpoint, it
checks the mailbox queue to see if there is a message
indicating the checkpoint intervals. If a new checkpoint
interval is detected. The check pointing task finishes saving
its current checkpoint first and then calls function
next_period. This function resets the time which will be the
caller periodical task’s next running period. Since the check
pointing task can be guaranteed to obtain the CPU
periodically, the adaptive checkpoint interval hence able to
applied within a deterministic time range. In fact, if a

checkpoint reset message is in the Mailbox queue, and the
pervious checkpoint interval is Y, the new value will be
effective is no later than 2Y time.

 Write

 Read

Read checkpoint
 Preempt

Read to detect

Fig.1 Checkpoint Architecture on RTAI

4.1 EXPERIMENT RESULTS
 The experiment settings are as follows: a Pentium Dual
Core 1.6GHz CPU and 3GB RAM. The system is running
on a Ubuntu Linux with kernel version 2.6.18 and an RTAI
3.8 patch. In our experiments, we develop a simple
application that adds 1 to the current values starting from 1
until we force it to terminate. The check pointing operation
is hence to save the current accumulation value into a file,
and the recovery operation is to retrieve the checkpoint
(pervious accumulation value) and continue adding values
to that.
 The experiment is to show that the time to take a
checkpoint is predictable in our implementation. To test it
in a tress environment, we create disturbing threads in the
background. Specifically, when the check pointing task
starts executing, we run various number of normal Linux
dummy threads (priority 0) and lower priority real-time
dummy threads (priority=1) in the following order: first, we
test the check pointing overhead with no disturbing threads.
Here we have take 4 modules to implement the detail result.
The production which contains the counter which generates
task. The other modules are rollback, error checking and
recovery module. Here the Faults are artificial generated by
the user. Whenever the user press the CTRL key at that
particular time the fault is generated at the system
environment. At that particular time the error checking
module report that faults was found. Than the rollback
module again start from pervious checkpoint. The recovery
modules immediately check that faults and repair it as well
as it also display the time take to repair the faults. From
more than one reading we obtained that it is predetermined.

 Adaptive
 Checkpoint

 Mailbox

 Checkpoint

Fault
Detection

RTAI
Timer

Fault
Recovery

Main
function

Ashis Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 295 - 301

www.ijcsit.com 300

(1) Time taken to repair a faul t

 (1) Normal Linux threads Vs Check-pointing Time

(2) Number of Real-Time Thread Vs Check-Pointing Time

5. CONCLUSION AND FUTUREWORK
In this paper we implemented the checkpoint Rollback
Recovery in RTAI 3.8 real-time operating system. The
preemptable interrupt service provided by the RTAI makes
the checkpoint overhead predictable, so that the checkpoint
scheme is feasible to be applied in a real-time application to
provide fault tolerance. The experiment result performed on
a real system indicates that the checkpoint overhead is
close to constants. Our future work is to extend this work
to distribute and virtualization environment, where global
system states are maintained through synchronized
checkpoint protocols. The deterministic synchronization
overhead hence needs to be guaranteed by utilizing real-
time-aware and inter-process techniques.

 REFERENCES
[1] D. Moss, R.G. Melhem, S. Ghosh, “A Nonpreemptive Real-Time

Scheduler with Recovery from Transient Faults and its
Implementation” IEEE Trans. Software Eng., 29(8): 752-767, 2003.

[2] H. Lee, H. Shin and S. Min. “Worst case timing requirement of
real-time tasks with time redundancy”. In Proc. Real-Time
Computing Systems and Application. 1999. 410-414.

[3] J-M Yang, D-F. Zhang, X-D. Yang. “User-level Implementation of
Check-pointing for Multithreaded Applications on Windows NT”.
In proceedings of the 12th Asian Test Symposium.2003.

[4] http://www.aero.polimi.it/~rtai.
[5] http:// www. Realtimelinuxfoundation.org.
[6] W.R. Dieter, J.E Lumpp, Jr. “A User-level Check -pointing Library

for POSIX Threads Programs”. 29 th Annual International
Symposium on Fault-Tolerant Computing Systems. 1999.

[7] W.R. Dieter, J.E.Lumpp, Jr. “User-level Check-pointing for Linux
Threads programs”. USENIX Annual Technical Conference.2001.

[8] Lineo, Inc. “RTAI Programming Guide 1.0”. September 2000.
[9] Y.K. Chen, E. Debes and R. Lienhartetal. “Evaluating and

Improving Performance of Multimedia Application on
Simultaneous Multithreading Architecture”, IEEE International
Conference on Parallel and Distributed Systems, Dec 2002.

[10] F. Karablieh and R.A. Bazzi. “Heterogeneous Check-pointing for
Multithreaded Application.” 21th IEEE Symposium on Reliable
Distributed System (SRDS’). pp. 140-149, October, 2002

[11] H. Y Zhang, D.S. Wang, W.M.Zheng. “Check-pointing and
Rollback Recovery for Windows NT Application.” Journal of
computer Research Development, 2001, 38(1), pp.50-55.

[12] J. Srouji, P. Schuster, and M. Bach B etal. “A Transparent
Checkpoint Facility on NT.” 2nd USENIX Windows NT symposium,
August 1998.

Ashis Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 295 - 301

www.ijcsit.com 301

